Aditi Garg

Introduction

HI!! I’m Aditi and you’re going to see a few of my favorite graphs and maps that I made using R Studio.

Graph 1

How are characters related to each other?

##         from        to weight     type
## 1       Jake       Amy      3 romantic
## 2       Jake   Charles      3  friends
## 3       Jake   Raymond      3  friends
## 4       Jake      Rosa      2  friends
## 5       Jake     Terry      2  friends
## 6       Jake      Gina      2  friends
## 7       Jake Hitchcock      1  friends
## 8       Jake    Scully      1  friends
## 9        Amy   Charles      2  friends
## 10       Amy   Raymond      3  friends
## 11       Amy      Rosa      2  friends
## 12       Amy     Terry      1  friends
## 13       Amy      Gina      1  friends
## 14       Amy Hitchcock      1  friends
## 15       Amy    Scully      1  friends
## 16      Rosa   Raymond      2  friends
## 17      Rosa     Terry      1  friends
## 18      Rosa   Charles      2  friends
## 19      Rosa      Gina      2  friends
## 20      Rosa Hitchcock      1  friends
## 21      Rosa    Scully      1  friends
## 22     Terry   Charles      3  friends
## 23     Terry      Gina      2  friends
## 24     Terry   Raymond      3  friends
## 25     Terry Hitchcock      1  friends
## 26     Terry    Scully      1  friends
## 27   Charles      Gina      3 romantic
## 28   Charles   Raymond      2  friends
## 29   Charles Hitchcock      1  friends
## 30   Charles    Scully      1  friends
## 31      Gina   Raymond      3  friends
## 32      Gina Hitchcock      1  friends
## 33      Gina    Scully      1  friends
## 34   Raymond Hitchcock      1  friends
## 35   Raymond    Scully      1  friends
## 36 Hitchcock    Scully      3  friends
##   X      name sex             occupation
## 1 1      Jake   M              Detective
## 2 2       Amy   F               Sergeant
## 3 3      Rosa   F              Detective
## 4 4     Terry   M             Lieutenant
## 5 5   Charles   M              Detective
## 6 6      Gina   F Civilian Administrator
## 7 7   Raymond   M                Captain
## 8 8 Hitchcock   M              Detective
## 9 9    Scully   M              Detective
##         from        to weight     type
## 1       Jake       Amy      3 romantic
## 2       Jake   Charles      3  friends
## 3       Jake   Raymond      3  friends
## 4       Jake      Rosa      2  friends
## 5       Jake     Terry      2  friends
## 6       Jake      Gina      2  friends
## 7       Jake Hitchcock      1  friends
## 8       Jake    Scully      1  friends
## 9        Amy   Charles      2  friends
## 10       Amy   Raymond      3  friends
## 11       Amy      Rosa      2  friends
## 12       Amy     Terry      1  friends
## 13       Amy      Gina      1  friends
## 14       Amy Hitchcock      1  friends
## 15       Amy    Scully      1  friends
## 16      Rosa   Raymond      2  friends
## 17      Rosa     Terry      1  friends
## 18      Rosa   Charles      2  friends
## 19      Rosa      Gina      2  friends
## 20      Rosa Hitchcock      1  friends
## 21      Rosa    Scully      1  friends
## 22     Terry   Charles      3  friends
## 23     Terry      Gina      2  friends
## 24     Terry   Raymond      3  friends
## 25     Terry Hitchcock      1  friends
## 26     Terry    Scully      1  friends
## 27   Charles      Gina      3 romantic
## 28   Charles   Raymond      2  friends
## 29   Charles Hitchcock      1  friends
## 30   Charles    Scully      1  friends
## 31      Gina   Raymond      3  friends
## 32      Gina Hitchcock      1  friends
## 33      Gina    Scully      1  friends
## 34   Raymond Hitchcock      1  friends
## 35   Raymond    Scully      1  friends
## 36 Hitchcock    Scully      3  friends
##   X      name sex             occupation
## 1 1      Jake   M              Detective
## 2 2       Amy   F               Sergeant
## 3 3      Rosa   F              Detective
## 4 4     Terry   M             Lieutenant
## 5 5   Charles   M              Detective
## 6 6      Gina   F Civilian Administrator
## 7 7   Raymond   M                Captain
## 8 8 Hitchcock   M              Detective
## 9 9    Scully   M              Detective
##   id X     label  group             occupation
## 1  1 1      Jake   Male              Detective
## 2  2 2       Amy Female               Sergeant
## 3  3 3      Rosa Female              Detective
## 4  4 4     Terry   Male             Lieutenant
## 5  5 5   Charles   Male              Detective
## 6  6 6      Gina Female Civilian Administrator
## 7  7 7   Raymond   Male                Captain
## 8  8 8 Hitchcock   Male              Detective
## 9  9 9    Scully   Male              Detective
##    from to
## 1     1  2
## 2     1  5
## 3     1  7
## 4     1  3
## 5     1  4
## 6     1  6
## 7     1  8
## 8     1  9
## 9     2  5
## 10    2  7
## 11    2  3
## 12    2  4
## 13    2  6
## 14    2  8
## 15    2  9
## 16    3  7
## 17    3  4
## 18    3  5
## 19    3  6
## 20    3  8
## 21    3  9
## 22    4  5
## 23    4  6
## 24    4  7
## 25    4  8
## 26    4  9
## 27    5  6
## 28    5  7
## 29    5  8
## 30    5  9
## 31    6  7
## 32    6  8
## 33    6  9
## 34    7  8
## 35    7  9
## 36    8  9

It shows how each character is connected to the other,i.e shows the relationships between them.

I used circle as an icon for each character and the females are represented by voilet and males are represented by sky blue color.

Graph 2

How many diamonds are very good? I chose the DIAMONDS dataset for this graph.

I plotted a graph of the count vs the cut to find how many diamonds are of very good cut.

MAP 3

I used the dataset of prettymapr to plot a few specific data on the city of Mysore.

##        min      max
## x 76.49536 76.81536
## y 12.14518 12.46518
## Rows: 22,104
## Columns: 60
## $ osm_id               <chr> "8285857", "8285861", "8285890", "8285892", "8285~
## $ name                 <chr> NA, NA, "Sri Harsha Road", "Ashoka Road", "D. Dev~
## $ AND.importance_level <chr> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, N~
## $ AND_a_nosr_r         <chr> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, N~
## $ GPS_Trail            <chr> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, N~
## $ access               <chr> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, "~
## $ addr.city            <chr> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, N~
## $ alt_name             <chr> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, "~
## $ alt_name.kn          <chr> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, N~
## $ alt_name_1           <chr> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, N~
## $ area                 <chr> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, N~
## $ bicycle              <chr> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, "~
## $ bridge               <chr> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, N~
## $ covered              <chr> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, N~
## $ created_by           <chr> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, N~
## $ crossing             <chr> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, N~
## $ cutting              <chr> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, N~
## $ cycleway             <chr> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, N~
## $ foot                 <chr> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, "~
## $ ford                 <chr> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, N~
## $ highway              <chr> "residential", "secondary", "tertiary", "secondar~
## $ horse                <chr> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, N~
## $ incline              <chr> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, N~
## $ indoor               <chr> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, N~
## $ int_name             <chr> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, N~
## $ int_ref              <chr> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, N~
## $ junction             <chr> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, N~
## $ lanes                <chr> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, "~
## $ layer                <chr> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, N~
## $ level                <chr> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, N~
## $ lit                  <chr> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, N~
## $ maxspeed             <chr> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, "~
## $ maxspeed.type        <chr> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, N~
## $ motor_vehicle        <chr> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, "~
## $ mtb.scale            <chr> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, N~
## $ mtb.scale.uphill     <chr> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, N~
## $ name.alt             <chr> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, N~
## $ name.en              <chr> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, N~
## $ name.kn              <chr> "ಅಕà³\215ಬರà³\215 ರಸà³\215ತೆ", NA~
## $ name.old             <chr> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, N~
## $ noname               <chr> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, N~
## $ note                 <chr> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, N~
## $ old_name             <chr> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, N~
## $ old_name.kn          <chr> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, N~
## $ old_ref              <chr> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, N~
## $ oneway               <chr> NA, NA, "yes", "yes", "yes", NA, NA, NA, NA, NA, ~
## $ ref                  <chr> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, "~
## $ ref.old              <chr> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, N~
## $ service              <chr> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, N~
## $ sidewalk             <chr> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, N~
## $ smoothness           <chr> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, N~
## $ source               <chr> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, "~
## $ surface              <chr> NA, "asphalt", NA, "asphalt", "asphalt", "asphalt~
## $ toll                 <chr> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, N~
## $ tracktype            <chr> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, N~
## $ tunnel               <chr> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, N~
## $ vehicle              <chr> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, N~
## $ wheelchair           <chr> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, N~
## $ width                <chr> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, N~
## $ geometry             <LINESTRING [°]> LINESTRING (76.64894 12.318..., LINEST~
## Rows: 156
## Columns: 16
## $ osm_id        <chr> "28240152", "28413680", "28413759", "28424626", "2842463~
## $ name          <chr> "GRS Fantasy Park", "Subbarayanakere Park", "Curzon Park~
## $ addr.city     <chr> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, "Mysuru", NA, NA~
## $ addr.postcode <chr> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, "570008", NA, NA~
## $ addr.street   <chr> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, "16th Cross Road~
## $ designation   <chr> NA, NA, NA, NA, NA, NA, NA, "Vijyangar II stage, near po~
## $ landuse       <chr> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, ~
## $ leisure       <chr> "water_park", "park", "park", "park", "park", "park", "p~
## $ name.en       <chr> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, ~
## $ name.kn       <chr> NA, "ಸà³\201ಬà³\215ಬರಾಯನಕೆರೆ ಉà²~
## $ opening_hours <chr> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, ~
## $ operator      <chr> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, ~
## $ source        <chr> NA, NA, NA, NA, NA, NA, NA, "known place", NA, NA, "loca~
## $ tourism       <chr> "theme_park", NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA~
## $ wheelchair    <chr> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, ~
## $ geometry      <POLYGON [°]> POLYGON ((76.63517 12.35518..., POLYGON ((76.646~
## Rows: 57
## Columns: 8
## $ osm_id   <chr> "28918825", "28918827", "28919161", "28919162", "28919228", "~
## $ name     <chr> "Winning post", "The pond", "Respite", "The lake", "The bend"~
## $ barrier  <chr> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, N~
## $ golf     <chr> "fairway", "fairway", "fairway", "fairway", "fairway", "fairw~
## $ landuse  <chr> "grass", "grass", "grass", "grass", "grass", "grass", "grass"~
## $ ref      <chr> "18", "1", "17", "6", "4", "3", "16", NA, NA, NA, "6", "10", ~
## $ tee      <chr> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, "white", NA, NA, NA, ~
## $ geometry <POLYGON [°]> POLYGON ((76.66181 12.29608..., POLYGON ((76.66188 12~
## Rows: 636
## Columns: 7
## $ osm_id         <chr> "3380643217", "3650204586", "3650204587", "3650204588",~
## $ name           <chr> "Dodda Alada Mara", NA, NA, NA, NA, NA, NA, NA, NA, NA,~
## $ name.botanical <chr> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,~
## $ name.kn        <chr> "ದೊಡà³\215ಡ ಆಲದಮರ", NA, NA, NA, NA, N~
## $ natural        <chr> "tree", "tree", "tree", "tree", "tree", "tree", "tree",~
## $ species        <chr> "Ficus benghalensis", NA, NA, NA, NA, NA, NA, NA, NA, N~
## $ geometry       <POINT [°]> POINT (76.72106 12.28275), POINT (76.64845 12.267~
## [1] 247
## [1] 37

I’ve plotted the highways, parks, landuse and natural spots on the map of mysore.

My Course Reflection

This course was about learning to use R programing as a design tool. I learnt a way too many things and it was overwhelming at first until i realised its still beginner level information. I learnt to use R markdown to create a html document, learnt to make and plot graphs and maps of cities to show data, i learnt to make presentation using R. I think all this will help my practice as an aspiring artist and designer for making presentations, for making visuals to represent data, it will help for organising research data. Arvind is genuinely the best teacher i’ve ever had and if i had to learn R in my school in the 10th or 12th grade i would’ve simply been overwhelmed and avoided the topic but Arvind managed to build interest and enthusiasm in me to learn and troubleshoot the errors as well. Also I want to add that Arvind has great taste in music and i’d love to have access to his playlists. Arvind is a Boomer from Srishti who knows to use “Bruh” now. I wish to have on campus classes with Arvind sometime:)